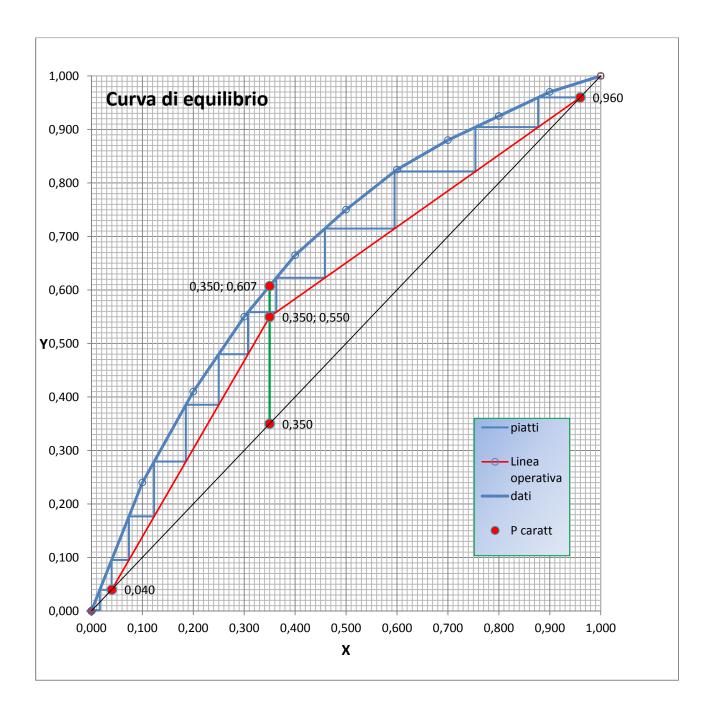
01- RETTIFICA CONTINUA

12 kmol/h di una miscela di due composti organici, vengono sottoposte a RETTIFICA CONTINUA in una colonna a piatti operante a pressione atmosferica. Con tale operazione si vuole ottenere un distillato avente frazione molare X_D = 0.96 ed un residuo avente frazione molare X_W = 0.04 (tali frazioni si riferiscono al componente più volatile). L'alimentazione che ha una composizione espressa in frazione molare del componente più volatile pari a X_F =0.35 si trova inizialmente disponibile alla temperatura T=24°C e viene immessa in colonna allo stato liquido alla temperatura di ebollizione. Tali condizioni si realizzano con un opportuno preriscaldamento della miscela prima del suo ingresso in colonna.


Sono noti i seguenti dati:

- Temperatura ebollizione dell'alimentazione: T_F = 108°C
- Temperatura ebollizione del distillato: T_D = 82 °C
- Temperatura ebollizione del residuo: T_W = 118 °C
- Calore specifico della miscela a qualsiasi composizione C_{p medio} = 48 kcal/kmol °C
- Calore latente di evap.ne/cond.ne della miscela a qualunque composizione H_V=32540 kJ/kmol

Calcolare:

- 1. il numero di stadi teorici che l'operazione richiede, considerando che si opera con un rapporto di riflusso R_{OTT} = 1.5 R_{MIN} (50% maggiore di R_{MIN}) e che i dati riferiti alla curva di equilibrio sono riportati di seguito.
- 2. Le portate orarie in kmol/h di distillato e di residuo in uscita alla torre.
- 3. Le portate in kmol/h di riflusso e di vapore nel tratto di arricchimento e in quello di esaurimento.
- 4. La portata in m³/h di acqua industriale di raffreddamento, da inviare al condensatore totale di testa, sapendo che entra alla temperatura di 18 °C e che subisce un salto termico di 12°C.
- 5. La potenza termica in kW, necessari per portare l'alimentazione dalla temperatura iniziale alle condizioni termiche di ingresso alla colonna.
- 6. La portata di vapore di rete, disponibile saturo secco, alla pressione di 5 ATA da inviare al ribollitore di coda.
- 7. Le superfici di scambio termico del condensatore totale e del ribollitore se si ipotizza che i coefficienti globali di scambio termico valgono rispettivamente: Ud $_{\rm C}$ = 550 W/m $^{\rm 2}$ K e Ud $_{\rm w}$ = 860 W/m $^{\rm 2}$ K.

X_A	0.000	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.000
YA	0.000	0.240	0.410	0.550	0.665	0.750	0.825	0.880	0.925	0.970	1.000

